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Variational approach to the problem of dark-soliton generation

F. Kh. Abdullaev, N. K. Nurmanov, and E. N. Tsoy
Physical-Technical Institute of the Uzbekistan Academy of Sciences, G. Mavlyanova str.2-B, Tashkent-84, 700084, Uzbekis

~Received 7 April 1997!

The creation of dark solitons from an arbitrary initial pulse in the system, described by the nonlinear
Schrödinger equation, is considered by applying the variational method to the corresponding linear spectral
problem. The initial pulse is a potential in the linear operator of the Zakharov-Shabat eigenvalue problem and
the discrete spectrum of the problem determines the number and parameters of emerged solitons. The proce-
dure for calculation of approximate values of the lowest- and higher-order discrete eigenvalues from spectral
data of known~trial! potential is proposed. The application of this procedure to some examples shows quali-
tative agreement between variational and exact results.@S1063-651X~97!09409-9#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The problem of propagation of dark solitons in vario
media has remained the center of intensive experimental
theoretical investigations during past two decades. As is w
known, dark solitons are localized excitations on a unifo
background. In a problem of evolution of optical pulses
fibers, dark solitons represent troughs of intensity that
localized in time. The dynamics of optical solitons is go
erned by the nonlinear Schro¨dinger ~NLS! equation@1–3#

iQt2~s/2!Qxx1uQu2Q50. ~1.1!

In this caseQ(x,t) is the slowly varying pulse envelope,t is
the distance along a fiber, andx is the time in a frame of
reference moving with the group velocity. Indices deno
partial differentiation with respect to appropriate variabl
Equation ~1.1! describes two different classes of solita
waves depending on the sign ofs561. In this paper, we
investigate the cases51 ~dark solitons!, which corresponds
to the normal group-velocity dispersion. The propagation
nonlinear optical pulses in the region of anomalous gro
velocity dispersion is also governed by Eq.~1.1!, with
s521 ~bright solitons!.

The NLS equation arises in many areas of physics suc
nonlinear optics and plasma physics. For instance, the
fraction of plane electromagnetic waves in a nonlinear de
cusing medium and the propagation of perturbations i
Bose gas with repulsion are also described by the NLS eq
tion @1–3#.

As was discovered by Zakharov and Shabat@1#, Eq. ~1.1!
is exactly integrable by means of the inverse scattering tra
form ~IST! technique and it has an exact soliton solution
the form

QS~x,t !5@l2 in tanh~z!#exp~ i uq0u2t1 if!, ~1.2!

wherez5n(x1lt), n25uq0u22l2, tan(f)5n/l, uq0u is the
background wave amplitude, andn andl are the amplitude
and velocity of the dark soliton, respectively. Obviously, it
very complicated to create the dark solitons in a shape
scribed by Eq.~1.2! exactly. So it seems interesting to co
sider the problem of generation of dark solitons by an a
trary initial pulse. The fact that Eq.~1.1! is exactly integrable
561063-651X/97/56~3!/3638~7!/$10.00
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by the IST method carries a guarantee that any initial pu
will evolve into a set of dark solitons and radiation. So t
main attention in our consideration is devoted to the de
mination of the number of emerging solitons and their p
rameters. As is well known, one should solve the cor
sponding Zakharov-Shabat eigenvalue problem in orde
obtain the information about emerging solitons. There
few initial pulses for which the Zakharov-Shabat proble
can be solved exactly; among them are ‘‘black’’@1# and
‘‘gray’’ @4# boxes~see below! and a tanh pulse@5#.

In the present paper we aim to use a variational appro
for obtaining approximate eigenvalues, which determine
parameters of solitons. Such an approach, widely used in
quantum theory, was applied in@6–8# to bright-soliton gen-
eration. In these papers the explicit formulas for eigenval
were obtained for different kinds of complex potentials. R
erence@7# suggests an interesting idea for taking all eige
values based on the eigenfunctions corresponding to
eigenvalue. Here we should note that the problem conside
in the present paper has specific properties, unlike the p
lem corresponding to the ‘‘bright’’ NLS case, and has be
studied by other authors. The main differences are~i! the
linear operator is the Hermitian operator, so its eigenval
are real and~ii ! the scattering potential@initial condition for
Eq. ~1.1!# has nonzero values at infinity. As a result, t
above-enumerated differences cause the specific behavi
the discrete spectrum~see@1,9#!.

The paper is organized as follows. Section II contains
basic idea of the analytical method, which gives an appro
mate solution of the eigenvalue problem. We propose
simple tool based on the variational method for finding bo
the lowest- and higher-order eigenvalues. In our consid
ation the discrete spectrum corresponding to the given po
tial may be obtained from eigenfunctions and eigenvalues
a trial potential for which the problem can be solved exac
The best approximation may be achieved by varying the
rameters of the trial potential. In order to avoid tedious c
culations we suggest also a simple rule for the estimation
optimal values of variational parameters. The rule is ba
on the use of integral invariants of the NLS equation. C
tainly this step is beyond the variational scheme, but it s
plifies calculations essentially. In Sec. III we consider t
application of the method to different initial pulses. As o
3638 © 1997 The American Physical Society
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56 3639VARIATIONAL APPROACH TO THE PROBLEM OF DARK- . . .
main purpose is to demonstrate the possibility of the va
tional approach, for simplicity we consider only real initi
pulsesQ(x,0). We find good agreement between appro
mate and exact solutions. Section IV summarizes the res
of the paper. In the Appendix, eigenfunctions and spec
parameters of the piecewise constant potential, which ma
used as the trial potential, are given.

II. VARIATIONAL APPROACH TO THE
ZAKHAROV-SHABAT EIGENVALUE

PROBLEM

Because of the integrability of Eq.~1.1! by the IST
method, it follows that the evolution of the initial puls
Q(x,0)5q(x), where q(x)→uq0ueiu for x→2` and
q(x)→uq0u for x→1` @Cauchy problem for Eq.~1.1!#, is
reduced to the spectral problem of the Zakharov-Shabat
tem @1#

FC5lC, F5S i ]/]x
iq~x!

2 iq* ~x!

2 i ]/]x D , C5S c1

c2
D ,

~2.1!

with the boundary conditions

C→S 1
Ceiu Dexp~2 i zx!, x→2`

~2.2!

C→a~l!S 1
CDexp~2 i zx!1b~l!S 2C

1 Dexp~ i zx!,

x→1`,

where C5 i (l2z)/uq0u, z5@l22uq0u2#1/2, a(l),b(l) are
scattering coefficients, and an asterisk stands for com
conjugation.

The discrete spectrum of the problem~2.1! and ~2.2! can
be found from the condition

a~l!50. ~2.3!

As shown in @1,9#, the rootsln , n51, . . . ,N, of the
given equation lie in the real axis between2uq0u and uq0u.
The number of solitons emerging from the initial pulse c
incides with the numberN of discrete eigenvalues of th
spectral problem~2.1!. Parametersln and nn5zn / i repre-
sent the parameters of thenth soliton @see Eq.~1.2!#.

Although the system~2.1! is linear, its general solution
for arbitrary initial pulse is not available. Therefore, eve
attempt to develop approximate analytical methods in or
to obtain eigenvalues has an interest. For this purpose
reformulate the problem~2.1! and~2.2! as a variational prob-
lem. There are many ways to build a variational function
corresponding to the problem~2.1!, but in this paper we pu
forth the reformulation based on the functional correspo
ing directly to spectral parameterl ~see, e.g.,@10#!:

l5^C1FC&/^C1C&, ~2.4!

where angular brackets denote integration inx from 2` to
1` and the dagger corresponds to Hermitian conjugat
One can consider Eq.~2.4! in the following way. If we insert
exact eigenfunctions, corresponding to the potentialq(x),
-

-
lts
al
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-
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-
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into this functional, the right-hand side of Eq.~2.4! gives an
exact eigenvalue. But substitution of any other~trial! func-
tions C tr(x,$c%) instead of exact solutions into this func
tional gives approximate eigenvalues of the problem. H
$c% denotes the set ofK parametersc1 ,c2 , . . . ,cK . The pa-
rameters corresponding to the best approximation of eig
values are determined from the condition

dl„C~x,$c%!…50 or ]„C~x,$c%!…/]ck50,

k51, . . . ,K. ~2.5!

Of course, the choice of good trial functions is a crucial s
of the variational approach and requires deep insight into
physics of the problem in order to obtain more precise
sults.

This procedure gives approximate value of the low
~nearest to 0! eigenvaluel1 . To find higher eigenvaluesln ,
n52, . . . ,N one should take the functions that are orthog
nal to the functions already used.

For convenience in choosing appropriate trial functio
we propose to use the eigenfunctions of the~trial! potential
q0(x,$c%), for which analytical solution can be obtained e
actly, i.e., the set of eigenvaluesln

0($c%) and eigenfunctions
F(x,$c%)5„w1(x,$c%),w2(x,$c%)…T. The advantages of the
approach are as follows:~i! The trial functions automati-
cally satisfy the necessary boundary~2.2! and other condi-
tions and~ii ! these functions are the set of orthogonal fun
tions and therefore one may use them to obtain higher-o
eigenvaluesln .

Making use of the functional~2.4! and Eq.~2.1!, we have
the basic formula for approximate eigenvaluesl, corre-
sponding to the potentialq(x) from the spectral data
l0,w1 ,w2 of the trial potentialq0(x,$c%):

l5l022
^Im@~q2q0!w1w2* #&

^uw1u21uw2u2&
. ~2.6!

Note that in this equation the indexn of l,l0,w1 ,w2 is omit-
ted, i.e., the equation is valid for the whole discrete sp
trum.

The different approach based on the variation of the
grangian of the Zakharov-Shabat problem, correspondin
bright-soliton propagation, is considered in Refs.@6,7#. Ex-
plicit formulas for approximate eigenvalues and for con
tions of eigenvalues number are obtained for different pot
tials. In the case of dark solitons the LagrangianL of Eqs.
~2.1! and ~2.2! has the form

L5 1
2 E

2`

`

@c2c1x2c1c2x12ilc1c21qc1
22q* c2

2#dx.

~2.7!

Due to specific properties of the spectral problem~2.1! and
~2.2! it is impossible to use the procedure of Refs.@6,7#
directly. However, following these works, one can take
the trial function the product of known eigenfunctio
F(x,$c%) to parameterA: C5AF(x,$c%). In Ref. @7# the
eigenfunction forl50, corresponding to the given potentia
is chosen as the functionF(x,$c%); here we choose the
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eigenfunction of the trial potentialq0(x,$c%) as the function
F(x,$c%). Then we have from the condition]L/]A50 the
relation

l5l01
i

2

^@~q2q0!w1
22~q* 2q0* !w2

2#&

^w1w2&
. ~2.8!

Equation ~2.8!, for the estimation of eigenvalues, has fr
parameters$c%. The variation ofL in $c%, taking into ac-
count Eq.~2.8!, does not lead to new equations for para
eters$c%. As a matter of fact, this difficulty was, e.g., in Re

FIG. 1. Given~solid curve! and trial ~dotted curve! potentials.
~a! Gray and black boxes.~b! tanh pulse and antisymmetric blac
box. ~c! Dark Gaussian pulse and black box.
-

@6# also, where the final result has an arbitrary parame
The problem appeared from the choice of the functiona
the form ~2.7!. Therefore, in the following, we shall dea
with the functional~2.4! only.

To determine the best approximation ofl it is necessary
to vary Eq. ~2.6! with respect to parameters$c% @see Eq.
~2.5!# and to insert the optimal values$copt% into Eq.~2.6!. In
many cases this procedure leads to complicated imp
equations for parameters$c%, so it is useful to have a relation
for the estimation of them. On the other hand, it is know
that Eq. ~1.1! has an infinite set of integral invariants. Fo
example, the first invariant~‘‘number of particles’’! has the
form

I 1@q~x!#5E
2`

`

@ uq0u22uq~x!u2#dx. ~2.9!

If the trial functions depend only on one parameterc, then
one can define it from the condition

I 1@q~x!#5I 1@q0~x,c!#. ~2.10!

We note that this step gives a simple and effective rule
obtainingcopt. In @11# integrals of motion were used to ob
tain the parameters of solitons. Here we use them for
determination of the variational parameters. Although the
timation ~2.10! is rough, the approximate eigenvalues a
close to the exact ones~see Sec. III!.

Now we would like to note other possible applications
Eqs. ~2.6! and ~2.8!. Let the potentialq differ slightly from
q0, so that max@uq2q0u#;e!1. Then, Eqs.~2.6! and ~2.8!
represent a result of perturbation theory to first order ine. In
this case we can investigate the influence of small~periodic
and random! modulations of the initial pulse on the creatio
and propagation of dark solitons. Another application of E
~2.6! and ~2.8! is the possibility of taking the condition fo
emerging new eigenvalues~solitons!. Let the initial condi-
tion also depend on the set of parameters$p%, i.e.,q(x,$p%).
Since by changing parameters$p% the new eigenvalues ‘‘ap
pear’’ from the pointl56uq0u, the threshold values of$p%
can be determined from the conditionul($p%)u5uq0u.

III. APPLICATION OF VARIATIONAL PROCEDURE

In this section we illustrate the possibility of the vari
tional method by applying it to some particular examples.
further calculations we use Eq.~2.6! and the condition~2.10!
for the evaluation ofl. It should be noted that Eq.~2.8! with
condition~2.10! gives the same values of variational para
eters as Eq.~2.6!. It can be explained by the symmetry o
eigenfunctions of the system~2.1! and ~2.2!. To obtain suit-
able trial functions we have solved the problem~2.1! for a
piecewise constant potential

u~x!5H uq0uexp~ iu0! for x,2d

uq1uexp~ iu1! for uxu<d

uq0u for x.d.

~3.1!
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FIG. 2. Dependence of three eigenvalues on potential parameters.~a! Gray box: l1 ,l2 ,l3 as a function ofx1 for q150.2. ~b! tanh
pulse: l2 ,l3 ,l4 (l150) as a function ofx1 . ~c! Dark Gaussian pulse:l1 ,l2 ,l3 as a function ofx1 for a50.8.
p

is
ic
The expressions of spectral dataa(l) and b(l) of eigen-
functions and different particular cases are given in the A
pendix.

For simplicity we consider only real potentials. In th
case q(x) may have either symmetric or antisymmetr
boundary conditions atx→6`. Without losing generality,
one may takeq(1`)5uq0u andq(2`)56uq0u. Then, us-
ing the trial potentialq0(x)5u(x) as in Eq.~3.1! with uq1u
50, d5x0 , u150, andu050 or p @a symmetric or antisym-
metric black box; see Eqs.~A4!–~A6!#, Eq. ~2.6! may be
written in as
- l5l01
l0n0

~112n0x0!uq0u

3@J1 / f 6~x0!1J2exp~2n0x0!2uq0u/n0#, ~3.2!

wheren05@ uq0u22(l0)2#1/2,

J15E
0

x0
@q~x!6q~2x!# f 6~x!dx,
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J25E
x0

1`

@q~x!6q~2x!#exp~22n0x!dx,

the upper sign~1! and f 1(x)5cos(2l0x) correspond to po-
tentials with a symmetric boundary condition,q(2`)
5uq0u, and the lower sign~2! and f 2(x)5sin(2l0x) corre-
spond to potentials with an antisymmetric boundary con
tion q(2`)52uq0u.

A. Gray box

As the first example let us consider the gray box@Eq.
~3.1!, q(x)5u(x) with uq1uÞ0, d5x1 , andu05u150#; see
Fig. 1~a!. The appropriate spectral problem for such a pot
tial has been solved in@4#, where a transcendent equation f
the evaluation of the discrete spectrum has been given.
variational method gives the following formula for approx
matel:

l5l01
n0

~112n0x0!uq0u F n0

l0 uq1u2
l0

n0 ~ uq0u2uq1u!

3$12exp@22n0~x12x0!#%G , ~3.3!

wherel0 is defined from Eq.~A4!. From Eq.~2.10! we have
taken the following equation forx0 : x05x1(12uq1 /q0u2).
Figure 2~a! shows the dependence of the first three eigen
ues onx1 , evaluated with the help of Eq.~3.3!, for uq1u
50.2. The solid curve corresponds to the exact values, fo
from Eq.~A7! ~see@4#!. It is clear that in a wide region ofx1
the deviation of approximate values from exact values is
than 10%.

B. tanh pulse

Let us consider the initial pulse with antisymmetr
boundaries, for instance,q(x)5uq0utanh(x/x1) @see Fig. 1~b!#
for which the spectral problem has also been solved exa
In Ref. @5# the following equations for eigenvalues we
given:

l150, l2n52l2n115uq0u@12~12nx1 /uq0u!2#1/2,

n51, . . . ,N0, N05@ uq0u/x1#.
~3.4!

Having foundl0 from Eq. ~A5! and inserting it into Eq.
~3.2!, one takes the approximation forl. The condition
~2.10! gives the following estimation for optimal values:x0
5x1 . The comparison between approximate and exact
ues ofl is plotted in Fig. 2~b!. It shows that the approxima
tion of the third and fourth eigenvalues starts to deterior
asx1 increases. As is known, it is usual for variational me
ods. The reason for such deterioration is that we have
made an optimal choice of the variational parameterx0 . One
should calculatex0 by following the variational scheme in
stead of using the condition~2.10!.

C. Dark Gaussian pulse

As the last example we consider the initial pulseq(x)
5uq0u@12a exp(2x2/x1

2)#, the dark Gaussian pulse@see Fig.
i-

-

he

l-

d

s
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l-

e
-
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1~c!#. We compared approximate values ofln , taken from
Eq. ~3.2!, where l0 is evaluated from Eq.~A4!, x0
5(p/8)1/2a(23/22a)x1 , with the results of numerical simu
lations of Eq.~2.1!. Our numerical scheme is based on t
approximation of the potential with the piecewise const
analog~step onx;0.01!, for which there is a matrix trans
formation between the coefficients of eigenfunctions at2`
and1`. Making use of the bisection method in the interv
@2uq0u,uq0u# we find such al at whicha(l)'0 with accu-
racy ;1025. In Fig. 2~c! approximate and numerically ca
culated values are plotted. As in the previous cases, one
see good agreement between the first eigenvalue and its
proximation.

Now we estimate the influence of the fact that we evalu
optimal values of the parameter~in our examplesx0! not
varying Eq.~2.6!, but from Eq.~2.10!. For all the potentials
considered above in a wide region of parameters (x1 ,a)
such a choice ofx0 does not deteriorate our estimations.
Fig. 3 the dependence of approximate and optimal value
x0 on x1 for the gray box~with q150.2! is plotted. Optimal
values obtained numerically following the traditional vari
tional scheme from Eq.~3.3!. Here we should note that th
functional~3.3! may be a monotonic function ofx1 , e.g., for
;0.5,x1,;0.95, but for some values ofx1 it has several
~up to three! extrema and we choose those corresponding
the lowestl. One can see the good agreement between
proximate and optimal values ofx0 . Thus our condition for
finding the optimal value of the variational parameter
simple and at the same time effective in order to obtain
lowest eigenvalue, but it should be improved to obta
higher-order eigenvalues.

IV. CONCLUSION

We have illustrated the possibility of a variational refo
mulation of the Zakharov-Shabat eigenvalue problem and

FIG. 3. Comparison between optimal parameterx0 ~circles! and
its estimation from the condition~2.10! ~solid line! for the gray box,
q150.2.
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use of it to obtain parameters of dark solitons emerging fr
the given initial pulse. We have put forth a procedure
finding the discrete spectrum based on the eigenfunct
and eigenvalues of a trial potential. As such a potential
can choose the function~3.1!. It should be noted that on
choosing a trial potential of the form~3.1! we have the im-
plicit equation for l0 @see Eqs.~A4! and ~A5!#, but trial
eigenfunctions are represented by simple trigonometric
exponential functions. The procedure we have utilized in
present paper gives trial functions that satisfy the bound
conditions and the condition of orthogonality. It allows us
determine both the lowest- and higher-order eigenvalu
The fact that Eq.~1.1! is exactly integrable by means of th
IST method gives a simple rule for evaluating optimal~or
almost optimal! values of variational parameters. Applic
tions of this approach have shown qualitative agreement
tween exact and approximate eigenvalues of the problem
course, in the general case of the linear eigenvalue prob
d

f
ns
e

d
e
ry

s.

e-
Of
m,

by using our procedure one has to vary the functional w
respect to unknown parameters and solve the variatio
equations obtained to take optimal values of parameters
usual, in the variational method, one can obtain increa
accuracy by using more variational parameters. For this p
pose one can take the trial potential in the multistep form
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APPENDIX: SCATTERING DATA FOR STEPWISE
POTENTIAL „3.1…

Eigenfunctions of the Zakharov-Shabat problem~2.1! and
~2.2! with the potential~3.1! have the forms
C~x,l!55
S 1
C0eiu0Dexp~2 i z0x!, x,2d

AS 1
C1eiu1Dexp~2 i z1x!1BS 2C1e2 iu1

1 Dexp~ i z1x!, uxu<d

a~l!S 1
C0

Dexp~2 i z0x!1b~l!S 2C0

1 Dexp~ i z0x!, x.d,

~A1!
whereCj5 i (l2z j )/uqj u, z j5(l22uqj u2)1/2, j 50,1,

A5@11C0C1ei ~u02u1!#ei ~z02z1!d/~11C1
2!,

B5~C0eiu02C1eiu1!ei ~z01z1!d/~11C1
2!, ~A2!

and the spectral data are determined from

a~l!5e2i z0d@e22i z1d~11C0C1eiu1!~11C0C1ei ~u02u1!!

1e2i z1d~C02C1e2 iu1!

3~C0eiu02C1eiu1!#/@~11C0
2!~11C1

2!#,
~A3!

b~l!5@e22i z1d~C1eiu12C0!~11C0C1ei ~u02u1!!

1e2i z1d~C0eiu02C1eiu1!

3~11C0C1e2 iu1!#/@~11C0
2!~11C1

2!#.

Let us consider some particular cases, which can be use
trial potentials.

~i! Black box(u05u15uq1u50); see@1#. The main for-
mula can be easily taken from Eqs.~A1!–~A3!. The discrete
spectrum is defined from

l5n cot~2ld!, n5~ uq0u22l2!1/25z0 / i . ~A4!

The roots of Eq.~A4! lie symmetrically in the region
@2uq0u,uq0u#.
as

~ii ! Antisymmetric black box~u05p, u15uq1u50!. The
discrete spectrum is defined from

l52n tan~2ld!. ~A5!

The roots lie symmetrically andl150. Eigenfunctions for
both potentials may be presented as

C55
S 1

6C0
Dexp~nx!, x,2d

AS 1
0Dexp~2 ilx!1BS 0

1Dexp~ ilx!, uxu<d

b~l!S 2C0

1 Dexp~2nx!, x.d ,

~A6!

whereA5exp@2(il1n)d# andB56C0exp@(il2n)d#. In the
first case we choose the upper sign~1! in Eq. ~A6! and

b~l!5 ib, C05 ib exp~22ild!,

b5sgn$n/@ uq0usin~2ld!#%.

In the second case we choose the lower sign~2! in Eq. ~A6!
and
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b~l!52b, C05b exp~22ild!,

b5sgn$n/@ uq0ucos~2ld!#%.

Note that only positive values ofn must be considered.
~iii ! Gray box ~u05u150, uq1uÞ0!. We give here only
-

the equation for discrete spectrum~see@10#!:

l22uq0q1u5nz1cot~2z1d!. ~A7!

The roots of Eq.~A7! satisfy the conditionuq1u<ulu<uq0u.
nd

s
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