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Variational approach to the problem of dark-soliton generation
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The creation of dark solitons from an arbitrary initial pulse in the system, described by the nonlinear
Schralinger equation, is considered by applying the variational method to the corresponding linear spectral
problem. The initial pulse is a potential in the linear operator of the Zakharov-Shabat eigenvalue problem and
the discrete spectrum of the problem determines the number and parameters of emerged solitons. The proce-
dure for calculation of approximate values of the lowest- and higher-order discrete eigenvalues from spectral
data of known(trial) potential is proposed. The application of this procedure to some examples shows quali-
tative agreement between variational and exact red@t063-651X97)09409-9

PACS numbdis): 42.65.Tg

[. INTRODUCTION by the IST method carries a guarantee that any initial pulse
will evolve into a set of dark solitons and radiation. So the
The problem of propagation of dark solitons in various main attention in our consideration is devoted to the deter-
media has remained the center of intensive experimental andlination of the number of emerging solitons and their pa-
theoretical investigations during past two decades. As is wellameters. As is well known, one should solve the corre-
known, dark solitons are localized excitations on a uniformsponding Zakharov-Shabat eigenvalue problem in order to
background. In a problem of evolution of optical pulses inpbtain the information about emerging solitons. There are
fibers, dark solitons represent troughs of intensity that arg¢ew initial pulses for which the Zakharov-Shabat problem
localized in time. The dynamics of optical solitons is gov-can be solved exactly; among them are “blackt] and

erned by the nonlinear Schtimger (NLS) equation[1-3] “gray” [4] boxes(see belowand a tanh pulsg5].
. In the present paper we aim to use a variational approach
2M —
iQ—(0/2)Qu+|Q|*Q=0. LD for obtaining approximate eigenvalues, which determine the

; : ; - parameters of solitons. Such an approach, widely used in the
In this caseQ(x,t) is the slowly varying pulse envelopeis quantum theory, was applied j6-8§] to bright-soliton gen-

the distance along a fiber, andis the time in a frame of tion. In th th licit f las for ei |
reference moving with the group velocity. Indices denote®ation. In INESe papers the expliicit formulas for eigenvalues

partial differentiation with respect to appropriate variables.Vé"® obtained for d|ffer(_ant kmd; of_complex pqtenuals._Ref-
Equation (1.1) describes two different classes of solitary erencef7] suggests an |_nterest|ng idea for takmg'all eigen-
waves depending on the sign of== 1. In this paper, we values based on the eigenfunctions corresponding to zero
investigate the case=1 (dark solitong, which corresp(,)nds eigenvalue. Here we should note that the problem considered

to the normal group-velocity dispersion. The propagation 01jn the present paper has specific properties, unlike the prob-

nonlinear optical pulses in the region of anomalous grouplem corresponding to the "bright” NLS case, and has been

velocity dispersion is also governed by E@l.1), with ﬁ;um?d byr ?tr:eir ?#thgrsr.m}'t?en mamr ?|erren?:tes ?}a:vel
o=—1 (bright solitons. ear operator is the He an operator, so its eigenvalues

: ; ; ; re real andii) the scattering potentialnitial condition for
Tlhe NLS equatlog arllses n rrr\]any areas of physics Shucr:j%q (1.1] h(fas) nonzero valt?eg at in%nity As a result, the
nonlinear optics and plasma physics. For instance, the dif= " ‘™ : : o _
fraction of plane electromagnetic waves in a nonlinear defo}beog?;glig]:E)aet;?u‘rj(r'::éff;T)S cause the specific behavior of
E%‘ZIQ% ar2E\E/Siltl;]nr]eSﬂliiézeafer%?sagzggriob;g %r;ut[]bea:\lﬁ_rés elgu _ The paper is organized as follows. Section Il contains the
tion [1-3] Basic idea of the analytical method, which gives an approxi-

; te solution of the eigenvalue problem. We propose a
As was discovered by Zakharov and Shglat Eq. (1.1) ma o .
is exactly integrable by means of the inverse scattering tran simple tool based on the variational method for finding both

form (IST) technique and it has an exact soliton solution in h? Iowest_— and higher-order elgenvalyes. In our consider-
the form ation the discrete spectrum corresponding to the given poten-

tial may be obtained from eigenfunctions and eigenvalues of

Qg(x,t)=[A—iv tanhz)]expi|qo|’t+ig), (1.2 a trial potential for which the problem can be solved exactly.

The best approximation may be achieved by varying the pa-

wherez=v(x+\t), v2=|qo|?>—\?, tan(@)=vI\, |qo| is the  rameters of the trial potential. In order to avoid tedious cal-

background wave amplitude, andand\ are the amplitude culations we suggest also a simple rule for the estimation of

and velocity of the dark soliton, respectively. Obviously, it is optimal values of variational parameters. The rule is based
very complicated to create the dark solitons in a shape desn the use of integral invariants of the NLS equation. Cer-
scribed by Eq(1.2) exactly. So it seems interesting to con- tainly this step is beyond the variational scheme, but it sim-
sider the problem of generation of dark solitons by an arbiplifies calculations essentially. In Sec. Ill we consider the
trary initial pulse. The fact that Eq1.1) is exactly integrable application of the method to different initial pulses. As our
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main purpose is to demonstrate the possibility of the variainto this functional, the right-hand side of EQ.4) gives an
tional approach, for simplicity we consider only real initial exact eigenvalue. But substitution of any otligral) func-

pulsesQ(x,0). We find good agreement between approxi-tions W(x,{c}) instead of exact solutions into this func-
mate and exact solutions. Section IV summarizes the resultional gives approximate eigenvalues of the problem. Here

of the paper. In the Appendix, eigenfunctions and spectrafc} denotes the set &€ parameterg,,c,, ... ck. The pa-
parameters of the piecewise constant potential, which may beameters corresponding to the best approximation of eigen-
used as the trial potential, are given. values are determined from the condition
Il. VARIATIONAL APPROACH TO THE NP (x,{c}))=0 or a(¥(x,{c}))/dc=0,
ZAKHAROV-SHABAT EIGENVALUE
PROBLEM k=1,... K. (2.5

Because of the integrability of Eql.1) by the IST

method, it follows that the evolution of the initial pulse Of course, the choice of good trial functions is a crucial step

of the variational approach and requires deep insight into the

Q(x,0)=q(x), where q(x)—|qole'’ for x——o and - . . ; )
() —|qo| for x—s + [Cauchy problem for Eq(L.1)], is ES?’SICS of the problem in order to obtain more precise re

reduced to the spectral problem of the Zakharov-Shabat sys- This procedure gives approximate value of the lowest

tem[1] (nearest to Peigenvalue\ ;. To find higher eigenvalues,,,
¥ n=2,... N one should take the functions that are orthogo-
( , nal to the functions already used.
2 (2.1) For convenience in choosing appropriate trial functions
we propose to use the eigenfunctions of (tr@al) potential
with the boundary conditions q°(x,{c}), for which analytical solution can be obtained ex-
actly, i.e., the set of eigenvalueﬁ({c}) and eigenfunctions
WH(C olexp—igx), x——o CI)(x,{c})z(cpl(x,{c}),goz(x_,{c}))T. The adyantages of the
€ 2.2 approach are as follows:(i) The trial functions automati-
' cally satisfy the necessary boundd®:2) and other condi-
exp(—igx)er()\)( _C)exm x) tions and(ii) these functions are the set of orthogonal func-
1 ' tions and therefore one may use them to obtain higher-order
eigenvalues,,,.
X— + 0, Making use of the functiongR.4) and Eq.(2.1), we have

the basic formula for approximate eigenvaluges corre-
where C=i(\— )/|aol, £=[\?~|ap|2]*2 a(r),b(\) are o ; o

) ffioi d isk ds | Isponding to the potentiab(x) from the spectral data
scattering coefficients, and an asterisk stands for comp X0 ., of the trial potentialg®(x,{c}):

iglax —iq*(x)
iq(x) —ialox

FP=\¥, F= , ¥=

1
C

¥ —a(\)

conjugation.
The discrete spectrum of the probldéghl) and(2.2) can 0 %
be found from the condition A=N0— (Imi(q 2q )%;PZD (2.6)
(leal*+¢al®)
a(\)=0. (2.3
) Note that in this equation the indexof A ,\\°, ¢, ¢, is omit-
~As shown in[1,9], the rootsh,, n=1,... N, of the (e je., the equation is valid for the whole discrete spec-
given equation lie in the real axis betweerjqo| and|dg|.  trum.

The number of solitons emerging from the initial pulse co-  The different approach based on the variation of the La-
incides with the numbeN of discrete elgenvalu.es of the grangian of the Zakharov-Shabat problem, corresponding to
spectral problen(2.1). Parameters., and v,={,/i repre-  pright-soliton propagation, is considered in Re®,7]. Ex-
sent the parameters of tmeh soliton[see Eq.(1.2)]. plicit formulas for approximate eigenvalues and for condi-
Although the system(2.1) is linear, its general solution tjons of eigenvalues number are obtained for different poten-

for arbitrary initial pulse is not available. Therefore, everyijais. In the case of dark solitons the Lagranglamf Egs.
attempt to develop approximate analytical methods in orde(2.1) and(2.2) has the form

to obtain eigenvalues has an interest. For this purpose we

reformulate the probler(2.1) and(2.2) as a variational prob- o

lem. There are many ways to build a variational functional L=%f [ othiy— Y1ihox+ 2IN gy i+ Qb2 — g* Y3]dX.
corresponding to the problef@.1), but in this paper we put o

forth the reformulation based on the functional correspond- 2.7)

ing directly to spectral parametar(see, e.g.{10)): Due to specific properties of the spectral problé&ril) and

A=(TTFU)/(¥HP), (2.4y (2.2 it is impossible to use the procedure of Ref§,7]
directly. However, following these works, one can take as
where angular brackets denote integratiorxifrom —« to  the trial function the product of known eigenfunction
+ and the dagger corresponds to Hermitian conjugation®(x,{c}) to parameteA: ¥ =Ad(x,{c}). In Ref.[7] the
One can consider E@2.4) in the following way. If we insert  eigenfunction foln =0, corresponding to the given potential,
exact eigenfunctions, corresponding to the poterdi@), is chosen as the functio®(x,{c}); here we choose the



3640 F. KH. ABDULLAEV, N. K. NURMANOV, AND E. N. TSOY 56

[6] also, where the final result has an arbitrary parameter.

q(x) The problem appeared from the choice of the functional in
the form (2.7). Therefore, in the following, we shall deal
" layf with the functional(2.4) only.

To determine the best approximation Jofit is necessary

- to vary Eq.(2.6) with respect to parametefs} [see Eq.
(2.9] and to insert the optimal valugs,} into Eq.(2.6). In
many cases this procedure leads to complicated implicit
equations for parametefs}, so it is useful to have a relation
for the estimation of them. On the other hand, it is known

la,| that Eq.(1.1) has an infinite set of integral invariants. For
example, the first invariant'number of particles’) has the
- form
X X X X X Il[Q(X)]:f [1dol?~[a(x)?]dx. (2.9
(a) 1 0 0 1 —o

If the trial functions depend only on one parameterthen
A one can define it from the condition

l1[a(x)]1=11[9°%x,c)]. (2.10

, . We note that this step gives a simple and effective rule for
) % X obtainingc,y. In [11] integrals of motion were used to ob-
] tain the parameters of solitons. Here we use them for the
determination of the variational parameters. Although the es-
_..__4. 4a,/- timation (2.10 is rough, the approximate eigenvalues are
() close to the exact ondsee Sec. |\
Now we would like to note other possible applications of
Egs.(2.6) and (2.8). Let the potentialy differ slightly from
o« q°, so that ma{q—q°|]~e<1. Then, Eqs(2.6) and (2.8)
I represent a result of perturbation theory to first ordeg.im
% this case we can investigate the influence of srgtiodic
and randommodulations of the initial pulse on the creation
and propagation of dark solitons. Another application of Egs.
(2.6) and (2.8) is the possibility of taking the condition for
1 emerging new eigenvalugsolitons. Let the initial condi-
\/ tion also depend on the set of parametgrs i.e.,q(x,{p}).
Since by changing parametdns} the new eigenvalues “ap-
pear” from the point\ = =|qg|, the threshold values dp}
can be determined from the conditita({p})|=|dqol.

(© ) % X
11l. APPLICATION OF VARIATIONAL PROCEDURE
FIG. 1. Given(solid curve and trial (dotted curve potentials. In this section we illustrate the possibility of the varia-
(a) Gray and black boxegb) tanh pulse and antisymmetric black tional method by applying it to some particular examples. In
box. (c) Dark Gaussian pulse and black box. further calculations we use ER.6) and the conditior{2.10

_ _ _ . _ for the evaluation of. It should be noted that E¢2.8) with
eigenfunction of the trial potentiaj”(x,{c}) as the function  condition(2.10 gives the same values of variational param-
®(x,{c}). Then we have from the conditioflL/JA=0 the  eters as Eq(2.6). It can be explained by the symmetry of
relation eigenfunctions of the systef2.1) and(2.2). To obtain suit-

. o2 0k 2 able trial functions we have solved the problégnl) for a
o, @ )ei— (@ —a™)¢3]) (2.9  Piecewise constant potential

A=A+
2 (P102)
Equation (2.8), for the estimation of eigenvalues, has free lqolexp(i6y) for x<—d
parameterqc}. The variation ofL in {c}, taking into ac- 0 f <4
count Eq.(2.8), does not lead to new equations for param- u(x)=1 laalexp(io) for |x|=< 3.1

eters{c}. As a matter of fact, this difficulty was, e.g., in Ref. lqo| for x>d.
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FIG. 2. Dependence of three eigenvalues on potential paramé&giGray box: \i,\,,A3 as a function ok, for g;=0.2. (b) tanh

pulse: \,,A3,A4 (A;=0) as a function ok, . (c) Dark Gaussian pulse:\;,\,,\3 as a function ok, for «=0.8.

The expressions of spectral da@\) and b(\) of eigen- o A9p0
f i iff icul i in the Ap- A=At ——————
Iouenncdtli())(.ns and different particular cases are given in the Ap (1+25%0) Qo]
For simplicity we consider only real potentials. In this X[Jq /(o) + Joexp(20%%) — |qol/+°],

case q(x) may have either symmetric or antisymmetric

boundary conditions at— . Without losing generality,

one may takey(+=)=|qo| andq(—=)=*|qo|. Then, us- Wherev®=[|qo|*— (1%)*]*2,

ing the trial potentialg®(x)=u(x) as in Eq.(3.1) with |q,|

=0,d=Xq, 6;=0, andfy=0 or 7 [a symmetric or antisym- %o

metric t_)lack box see Egs.(A4)—(A6)], Eq. (2.6) may be lef [q(X) = q(—x)]f(x)dx,
written in as 0

(3.2
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J,= f w[q(x) +q(—x)]exp(— 2v°x)dx,
Xo

the upper sigr(+) andf_ (x) =cos(2°) correspond to po-
tentials with a symmetric boundary conditiom(— =)
=|qo|, and the lower sigri—) and f _(x)=sin(2\%) corre-

spond to potentials with an antisymmetric boundary condi-

tion q(—) = —|qg|.

A. Gray box

As the first example let us consider the gray Hé&q.
(3.1, q(x)=u(x) with |q,|#0,d=x,, andfy= 6,=0]; see

Fig. 1(a). The appropriate spectral problem for such a poten-

tial has been solved if], where a transcendent equation for

the evaluation of the discrete spectrum has been given. The

variational method gives the following formula for approxi-
mate\:

0 0

o A
A=A+ F|Q1|_?(|QO|_|Q1|)

L0
(1+2v%%0)|qo| {

x{1—exd —2v%(x;—Xo) 1}, (3.3

where\? is defined from Eq(A4). From Eq.(2.10 we have
taken the following equation foxy: Xo=X1(1—|q;/q0|?).

Figure 2a) shows the dependence of the first three eigenval

ues onx,, evaluated with the help of Eq3.3), for |q,|

=0.2. The solid curve corresponds to the exact values, foun

from Eq.(A7) (se€[4]). It is clear that in a wide region of;

the deviation of approximate values from exact values is les

than 10%.

B. tanh pulse

Let us consider the initial pulse with antisymmetric
boundaries, for instance(x) =|qgo|tanhf/x,) [see Fig. )]
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0.0 3.0

FIG. 3. Comparison between optimal parametgfcircles and
its estimation from the conditiof2.10 (solid line) for the gray box,
q,=0.2.

1(c)]. We compared approximate valuesof, taken from
Eq. (3.2, where \° is evaluated from Eq.(A4), X
(m/18)Y2a (2%~ a)x,, with the results of numerical simu-
lations of Eq.(2.1). Our numerical scheme is based on the
pproximation of the potential with the piecewise constant
analog(step onx~0.0J), for which there is a matrix trans-
formation between the coefficients of eigenfunctions-at
and + . Making use of the bisection method in the interval
[—19ol,|q0|1 we find such a at whicha(\)=~0 with accu-
racy ~107°. In Fig. 2c) approximate and numerically cal-
culated values are plotted. As in the previous cases, one can
see good agreement between the first eigenvalue and its ap-

for which the spectral problem has also been solved exactlyproximation.

In Ref. [5] the following equations for eigenvalues were
given:

A1=0, Nap=—Nan+1=|00|[1—(1—nxy/|qq)3]2

n=1,... 34

No,  No=[|dol/x¢]-
Having found\® from Eq. (A5) and inserting it into Eq.
(3.2, one takes the approximation for. The condition

(2.10 gives the following estimation for optimal values;

Now we estimate the influence of the fact that we evaluate
optimal values of the parametéin our examplesxy) not
varying Eq.(2.6), but from Eq.(2.10. For all the potentials
considered above in a wide region of parametets, &)
such a choice ok, does not deteriorate our estimations. In
Fig. 3 the dependence of approximate and optimal values of
Xo on x; for the gray box(with q,;=0.2) is plotted. Optimal
values obtained numerically following the traditional varia-
tional scheme from Eq.3.3). Here we should note that the
functional(3.3) may be a monotonic function of;, e.g., for

=X,. The comparison between approximate and exact val—0.5<x;<~0.95, but for some values of; it has several

ues of\ is plotted in Fig. 2Zb). It shows that the approxima-

(up to three extrema and we choose those corresponding to

tion of the third and fourth eigenvalues starts to deterioratéhe lowest\. One can see the good agreement between ap-

asx, increases. As is known, it is usual for variational meth-

proximate and optimal values af,. Thus our condition for

ods. The reason for such deterioration is that we have ndinding the optimal value of the variational parameter is

made an optimal choice of the variational param&gerOne
should calculatexy by following the variational scheme in-
stead of using the conditiof2.10.

C. Dark Gaussian pulse

As the last example we consider the initial pulgéx)
=|qo/[1— a exp(—x%x?)], the dark Gaussian pul§see Fig.

simple and at the same time effective in order to obtain the
lowest eigenvalue, but it should be improved to obtain
higher-order eigenvalues.

IV. CONCLUSION

We have illustrated the possibility of a variational refor-
mulation of the Zakharov-Shabat eigenvalue problem and the
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use of it to obtain parameters of dark solitons emerging fromby using our procedure one has to vary the functional with
the given initial pulse. We have put forth a procedure ofrespect to unknown parameters and solve the variational
finding the discrete spectrum based on the eigenfunctionsquations obtained to take optimal values of parameters. As
and eigenvalues of a trial potential. As such a potential on@sual, in the variational method, one can obtain increased
can choose the functiofB8.1). It should be noted that on accuracy by using more variational parameters. For this pur-
choosing a trial potential of the fori8.1) we have the im- pose one can take the trial potential in the multistep form.
plicit equation for\° [see Eqgs.(A4) and (A5)], but trial

eigenfunctions are represented by simple trigonometric and ACKNOWLEDGMENT

exponential functions. The procedure we have utilized in the

present paper gives trial functions that satisfy the boundary We thank the Foundation for Support of Fundamental In-
conditions and the condition of orthogonality. It allows us tovestigations of Uzbekistan Academy of Sciences for financ-
determine both the lowest- and higher-order eigenvaluesng this work in part(Grant No. 18/9%

The fact that Eq(1.1) is exactly integrable by means of the

IST method gives a simple rule for evaluating optintat APPENDIX: SCATTERING DATA FOR STEPWISE

almost optimal values of variational parameters. Applica- POTENTIAL (3.1)

tions of this approach have shown qualitative agreement be-

tween exact and approximate eigenvalues of the problem. Of Eigenfunctions of the Zakharov-Shabat probléhd) and
course, in the general case of the linear eigenvalue probleni2.2) with the potential(3.1) have the forms

Coe'fo exp(—ifgx), x<-—d

—-C,e

1
P(X,\)= Acleigl)exq—iglx)vLB( 1 expiZx), |x|=d (A1)

a(\) explilox), x>d,

1 ) -Cy
t Co exp(—iZox)+b(N) 1

whereC;=i(A—¢))/|q;, {;=(\?=]q;|HY2 j=0.1, (i) Antisymmetric black boxf,=, 6,=|qg;|=0). The
) ) discrete spectrum is defined from
A=[1+C,C €'~ 1]elllo Db/ (1+ C2),

. ) ) A=—v tan(2nd). A5
B=(Cqe'%0—C,ef1)e! (o619 (1+ C3), (A2) v tarn( ) (A5)

and the spectral data are determined from The roots lie symmetrically and;=0. Eigenfunctions for
both potentials may be presented as

a(\)=e?e” #1091+ CoC €' 1) (1+CoCye o™ )

+ eZigld(CO_ Cle_iﬂl) ( +](-: exq VX), x<—d
. . — %0
X (Coel%o—Cqe'"1)]/[(1+C2)(1+CH)], 1 0
(A3) T=¢ A 0 exp(—i)\x)ﬂLB(1 explix), |x|=d
b(\)=[e 2419(C,e'%1—Cy)(1+ CyC,e' P00y —c,
1 e2hd(Coeifo— C et b()\)( 1 |exp(—wx), x>d,

_ (A6)
X (14 CoCre™ ') ]/[(1+C3)(1+C)].

QereAz exd —(iA+v)d] andB= = Cyexd (in—v)d]. In the

Let us consider some particular cases, which can be used %t case we choose the upper sigh) in Eq. (A6) and

trial potentials.

(i) Black box(8y= 6,=|q:|=0); see[1]. The main for-
mula can be easily taken from Eq&1)—(A3). The discrete b(M)=iB8, Co=ip exp—2ikd),
spectrum is defined from

A=yp COt(Z)\d), V:(|qo|2_)\2)l/2:§0/i. (A4) IBZSgr{V/[lqO|Sm(2)\d)]}

The roots of Eq.(A4) lie symmetrically in the region Inthe second case we choose the lower sighin Eq. (A6)
[ =190l dol1- and
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b(\)=—8, Co=p exp(—2ird), the equation for discrete spectrusee[10)):

B=sgr{v/[|qo|cog2xd)]}. A2—|qo0y] = v1cot(2Z,d). (A7)

Note that only positive values of must be considered.
(iii) Gray box(6,=6,=0, |g;|#0). We give here only The roots of Eq(A7) satisfy the conditioniq;|<|\|<|qo|.
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